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Unified Method for Dynamical Groups
of Some Anharmonic Potentials
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Realizations of the creation and annihilation operators for some important anharmonic
potentials, such as the Morse potential, the modifiedcRI-Teller potential (MPT),

the pseudoharmonic oscillator, and infinitely deep square-well potential, are presented
by a factorization method. It is shown that the operators for the Morse potential and

the MPT potential satisfy the commutation relations of an SU(2) algebra, but those of

the pseudoharmonic oscillator and the infinitely deep square-well potential constitute
an SU(1, 1) algebra. The matrix elements of some related operators are analytically
obtained. The harmonic limits of the SU(2) operators for the Morse and MPT potentials

are studied as the Weyl algebra.
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1. INTRODUCTION

During the past several decades, the algebraic method has been applied to
a wide variety of fields in both physics and chemistry. Systems displaying a dy-
namical symmetry can be solved with algebraic techniques (Arima and lachello,
1974; Frank and Van Isacker, 1994; lachello and Levine, 1995). In particular, the
Morse (Morse, 1929) anddchl-Teller (PT) potentials fi3¢hl and Teller, 1933]
represent two of the most studied anharmonic systems where these techniques
have been used. Both of them are closely related with SO(2, 1) and SU(2) groups
(Alhassidet al., 1983; Berrondo and Palma, 1980; Cooper, 1993; Englefield and
Quesne, 1991; Frank and Wolf, 1984; Wu and Alhassid, 1990). The latter has been
used to describe the vibrational excitations of molecular systems, while the for-
mer is associated to the potential group approach. The relation between the SU(2)
group and the Morse and PT systems can be directly established by means of a co-
ordinate transformation applied to the radial equation of a 2D harmonic oscillator.
Because of its importance in the field of the molecular physics (Child and Halonen,
1984; Jensen, 2000; Nieto and Simmons, 1979), the other different approaches to
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study the Morse potential such as the supersymmetry transformation (Benedict
and Molnar, 1999), the time-dependent generalizations (Bessis and Bessis, 1994;
Kondo and Truax, 1988), the coherent states (Gerry, 1986; Kais and Levine, 1990)
as well as the path integration method (Berceanu and Gheorghe, 1987) have also
been carried out. The PT potential has been applied in the framework of the SU(2)
vibron model, where it is associated to the vibrational excitations of the molec-
ular bending modes (lachello and Oss, 1993). In addition, the pseudoharmonic
oscillator, as another important molecular potential, has couched for a while and
is recognized gradually (Ballhausen, 199&yBKkilic et al, 1992; Goldmeret

al., 1960; Popov, 2001). The aim of this work was to establish ladder operators
for the respective anharmonic potentials with the factorization method (Infeld and
Hull, 1951) and then construct their dynamic groups. It is shown that the opera-
tors for the Morse and modifiecoBéhl-Teller (MPT) potentials satisfy the SU(2)
group, but the SU(1, 1) for the pseudoharmonic potential and the infinitely deep
square-well potential.

This paper is organized as follows: In Section 2, we establish the ladder oper-
ators directly from their eigenfunctions and then constitute their suitable algebras.
The matrix elements of the related operators are analytically obtained from the lad-
der operators. Section 3 is devoted to showing how the harmonic limits of SU(2)
algebra for the Morse and MPT potentials are contracted to the Weyl algebra.
Conclusions are given in Section 4.

2. CONSTRUCTIONS OF THE LADDER OPERATORS

In this section we address how to find the ladder operators for the wave
functions with the factorization method. We intend to find differential operators
O with the following property:

Os¥n(§) = Ox¥nsa (). @
Specifically, we look for operators of the form
A d
Ox = AL(§) & + B+(§), 2)

where we stress that these operators depend only on the physical variahle
physical variablé is different with respect to the different cases, as is shown later.
We first study the case of Morse potential.

2.1. Morse Potential

Choosing the separated atoms limit as the zero of energy, the Morse potential
has the following form (Morse, 1929):

V(x) = Vo(e~2% — 2e7F%), 3

where Vo> 0 corresponds to its deptlg is related with the range of the
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potential, andx gives the relative distance from the equilibrium position of the
atoms.

The solution of the Scladinger equation associated to the Morse potential is
given by (Landau and Lifshitz, 1977)

), = ¥ (y) = NY e 2yS L2(y), 4)

whereL 25(y) are the associated Laguerre functions, the argumisnelated with
the physical displacement coordinatey y = ve=#X, N} is the normalization
constant

Ny =

n

\/ﬂ(v —2n—1r(n+1) -

'(v—n)

and the variables ands are related with the potential and the energy, respectively,

through
v [V g 2R ©®)
B*h p2h?

with the constraint condition®2= v — 2n — 1, whereu is the reduced mass of the
molecule.

Let us seek the ladder operators for this system. We start by establishing the
action of the differential operatq?y on the Morse functions (4)

d 1 s y o d
, = - > ) NV e 2yS L2s . 7
—dy|n> —[—2+y}|n) +Nyezy dy n(y) (7)

One possible relation for the derivative of the associated Laguerre functions is
given by (Gradshteyn and Ryzhik, 1994)

" i 1)[y Let2(y) +n L% (y)]- ®)

Substitution of this expression into (7) allows us to obtain the following relation
between the Morse functions belonging to the same potential

d
—La —

v

d 1 1 Ny
[®(25~|— 1) - <§s— 5) (2s+1)+ n] Iny, = — Nﬁ—lm -1, (9)

from which we can define the operator

d 1 v] [s+1
Ko=——@s+1)— —-s(2s+ 1)+ ]
|4+ - jses )

21V s (10)

with the following effect over the wave functions

K_In), =k_In—1), = /n(v —n)in - 1),. (11)
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As we can see, this operator annihilates the ground fiateas expected
from a step-down operator. The varialan Eq. (10) is understood as a diagonal
operator depending om, according to 8=v —2n — 1. Also note that the order
of the different terms in (10) is important, as these operators do not commute.

We now proceed to find the corresponding creation operator. We first need
to obtain a relation betweegt L%(y) and LnH(y) since this implies a relation
betweend In), and the Morse functiofn — 1),. To this end we start with the
relation

d
Yay La(y) = nLa(y) — (n+a)Lg_4(y), (12)

which, when taking into account that (Gradshteyml., 1994)
M+ LA () —@n+a+1-yLi(y)+ (M + o)l () =0  (13)

can be transformed into

yOly La(y) = (=n—a =14+ y)La(y) + (n+ LA (Y). (14)
On the other hand, the relation
Lat(y) = La(y) — L1 (V) (15)
together with Eq. (13) allows to set up the result
(oe ) (¢ +x—-1)
=|— 7L L 1
(n + ) n+1( ) (O[ ¥ n) (y) + n+1(y) ( 6)
which in turn can be substituted into Eq. (14) to obtain
d , ale—1 a n+1)n+a) ,
@ =1 g Lio0 = @+ m = 22D gy 4 CEINED oy
17
Finally, when this equation is substituted into (7), we obtain
d 1 s (2s+n) Ny (n+1)(n+ 29)
—In), =|—=—— 1),, (18
dy|n> [ 2 vy eso 1)} n)y N, (@s—1) In+1),, (18)
which allows to define the creation operator as
- d 1 v s—1
Ki=|—@s—1)+=s(@2s—1)— = |,/ —— 1
o= gy v+ s -0 35 (19)

satisfying the equation
Kin)y =kin+1), =0+ 1) —n—1)n+1),. (20)

SinceK . is a raising operator, it is expected to annihilate the last bounded state.
Indeed, for such a state= 1 and the square rootin (19) makes the operator vanish.
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We now study the algebra related with operaﬂms and K _. On the basis
of the results (11) and (20) we can calculate the commut#tqr K _]:

[K+= K—]|n v = 2k0|n>Vv (21)

where we introduce the eigenvalue

v—1
=n-— . 22
o . (22)
We can thus define the operator
~ . v—1
Ko=fi— —~. (23)
Thus the operatork ; andK , satisfy the commutation relations
[Ki K ]=2Ko [Ko,K]=-K_, [Ko,Ki=K; (29

which correspond to the SU(2) group for the Morse potential. The Casimir operator
is

~ ~ 1. . PPN S
Cin), = [Ké +5(Ke K+ KK+)} Ny = j( + 1))y, (25)
where |, the label of the irreducible representations of SU(2), is given by
v—1 N
j = = —, 26
i > > (26)

where we have used the definitibh=v — 1.

From the commutation relations (24) we know tiag is the projection of
the angular momentum, and consequently

v—1
2

Therefore the ground state correspondsite — |, while the maximum number
of statemax = (v — 3)/2 and consequentiyimax | Nmax = —1. The Morse wave
functions are then associated to one branch (in this case<to-1) of the SU(2)
representations, as expected in Frank and Van Isacker (1994). Finally, we should
notice that from the SU(2) algebra the Hamiltonian acquires the simple form

=m. (27)

H= h—‘”Rg, (28)
V
where
h 2
w= BV (29)
21

For the wave functions
In), = NYK"0),, (30)
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where the normalization constant is obtained through the commutation relations

(24), and turns out to be
) [(v—n—1)!

The following expressions from the operatéts. o can be obtained as

d - 1 3 - 1 S
dy — K+[2(25—1) ﬁ} - K‘[z(2s+ 1) m}
v

st )2 1) (32)
and
1 ~ 1 S - 1 S
§:K+[2(2s_1) Q}JFK[Z(st) m}
¥ (33)

st s —1)

The matrix elements of these two functions can be analytically obtained in terms
of Egs. (11) and (20) as

i)
m_
y

_ 1 (n+1)(v—n-1) 5
”>_ w_2n—2)\ " —2n— D —2n—3) "

1 n(v — n) 5
TV 2D —2nt )t

Vv

T m— 2 —2n ™ (34)
dl\___ 1 (N+ 1) —n— 1)@ —2n— 1)
<m‘®‘n> N 2(v—2n—2)\/ (v—2n—-23) Om,n+1
1 n(v —n)(v —2n — 1)
_ 2(v — 2n) (v—2n+1) m,n—1
" (35)

5
T 2w —2n—2)"™"
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2.2. MPT Potential

We start by presenting the eigenfunctions for the MPT problem (Landau and
Lifshitz, 1977). The MPT potential as described imngde (1971) can be written
as

__ b
cost(ax)’

whereD is the depth of the well and is related with the range of the potential,
while x gives the relative distance from the equilibrium position. The &dimger
equation associated to this potential is given by

d? 21 D

——W2(x) 4+ — E+7>wqx=0, 37

dx2 () h? ( cosl(ax) n() S
wherep is the reduced mass of the molecule arid related with the depth of the
potential as is shown later. We now introduce the following variables in accordance
with Landau and Lifshitz (1977),

[—2uE 2uD 1
€ = W, Q(q + 1) = W, q= E(_l‘i‘ 2k)1 (38)

1 2uD

V(X) = (36)

with

wherev has been introduced because of its relevance for the identification of the
ladder operators with the SU(2) algebra (as shown in the next section). In terms
of the variableu = tanhgx), the solutions of Eq. (37) are given by

Inyg = wI(u) = (1 — u?)“/?F [e —-Q,e+q+1e+1; %(1 — u)} . (40)

whereF[e —q,e + g+ 1,¢ + 1; %(1 — u)] are hypergeometric polynomials of
degreen with the constrainé — q = —n,wheren =0, 1, 2,.. ., for [n)q to remain
finite foru= — 1. The eigenvalue can be determined by the condidiene = n
and expressed as

212

£ =2 (-0 (41)

yos
wheree = q —n > 0. The number of bound states is determined by the dis-
sociation limite = g — n = 0. The normalization constant, however, was not
given in Eg. (40) and must be determined. As we know, the relation between the
Gegenbauer polynomials and the hypergeometric functions (Wang and Guo, 1989)
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can be written as

Ch(x) = (42)

2 2

Substitution of this expression into Eq. (40) allows to write the following solutions

r'2r+n) 1 1-x
WF[—I’I,Z&—FH,-%—A, :|

¢ 1_

In)q = NI(L— u?)2Cq 2 "(u), (43)
whereNy is the normalization constant to be determined. To achieve this task we
shall consider the following expression (Gradshteyn and Ryzhik, 1994)

mil (v — %F) (2v +n)
n!'T'(v)['(2v)

f 1(1 —x)"32(1 4 x) 2 [c:;(x)]2 dx =
-1

1
X |:Rev > §:|, (44)
from which we find the result

/ R e x)[Ch()]*dx = / - x2)"=¥2[Cl(x)]* dx
-1 -1

1
4 / (1 — )" ¥([Cl(x)]* dx,
-1

nil (v — 1) '(2v 4+ n)
- n!l"(vz)l"(Zv) (45)

as a consequence of the odd parity of the function §2)"~%/?x[C" (x)]?, whose
integral vanishes in the intervatL, 1].
The normalization is then given by condition

(ND)*

o

1 1
(n|n)g = f 1(1 — )i E WP du =1, (46)

which leads to the normalization constant

NO = \/om! (@—n—3)2q — 2n)! @)
" 72(q—n—1)I(2q — n)!

once Eg. (45) is taken into account. We should note that for q integer the state
associated with null energy is not normalizable. In this case the last bounded state
corresponds tq — n = 1. We thus have that,,x=q9q — 1= (v — 3)/2.

We now address the problem of finding ladder operators with the factoriza-
tion method. The ladder operators can be obtained by acting of the differential
operator% on the MPT wave functions. Therefore, formula (Gradshteyn and
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Ryzshik, 1994)

dci(t)
dt

together with Eq. (43), allows to obtain

= chéj]%(t)l (48)

d u(g —n) 2q—-2n+1 Ny
aue =T Mt e g, e @9

and introducing the explicit form of the normalization constant, Eq. (49) becomes

Vie (5 1m2) mwﬁw) — A DY),

du 1—u?
(50)

from which we can define the annihilation operakor as

ﬁ_=m<i+”(q‘”)) q-n+2 (51)

du 1-u? g-n '

or in terms ofv defined in (39)

. 1
P:\/l—uz(i—i-luuz's) <t (52)

du €

where in order to simplify the notation we have taken into account that 2
v —2n — 1 = 2q — 2n. The action of the operator (52) on the wave functions is
then given by

P_In)g = p_In— 1)q = v/n(v — n)jn — 1)g. (53)

As we can see, this operator annihilates the ground Kgtas expected from a
lowering operator.

We now proceed to find the corresponding creation opefatofTo this end,
we consider the formula (Talman, 1968)

20 — 1)(2 — DXCi(x) = 410 — 1)(1— x*)CI1 ()
+(2r +n = 1)+ DCHHX). (54)
This recurrence relation can be used together with Eq. (48) to obtain

oY@ kD@ - N
du’ ™ 1-uw Y T-w(2q-2n-1)NYy

N+ 1)q. (55)



2000 Dong

By using the explicit form of the normalization constant (47), Eq. (49) becomes

—\/—1—u2<%—uiq__u2)> A = VA D@~ i+

(56)

Likewise, in terms of the variable, we can thus define the creation operaar
as

R d -1
B, = J/1-2 (——+L ) i (57)
with the following effect on the wave functions

PiIn)g = psin+ g =N+ 1)(v —n—1)n+ 1), (58)

SinceP, is a raising operator it is expected to annihilate the last bounded state.
Indeed, for such state= 1 and the square root in (57) makes the operator vanish.
We now establish the algebra associated with the operBtor©n the basis

of Egs. (53) and (58), we calculate the commutafor [P ]:

[P, P_TIn)q = 2po|n)q, (59)
where we have introduced the eigenvalue
v—1
po=n-— 5 (60)

We can thus define the operator
v—1

Po=hf— 5 (61)
The operatorsf’i,o satisfy the commutation relations
[Pi,P1=2Py  [Po,P-]=P_, [Po,P =P (62

which correspondto the SU(2) algebra. This resultis consistent with the description

of finite discrete spectrum, in accordance with previous algebraic descriptions of

the bounded states of the PT potential (Frank and Van Isacker, 1994). The Casimir
operator

A A 1 . 4 A oA .
Cin)g = |:P(2)+ E(P+ P_+ P—P+)] INg = j(j + 1)In)q, (63)
wherej, the label of the irreducible representations of the SU(2), is given by
. v—1 N

2 2
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From the commutation relations (62), we know tikat is the projection of the
angular momenturm, and consequently

v—1
2

The ground state thus correspondatte= — j, while the maximum number of
gquantanmax = (v — 3)/2 and consequentiyinay | Nmax = —1 in accordance with

the constraint conditioa =q — n=1 for the last bounded state. The MPT wave
functions are thus associated to one branch (in this case<to-1) of the SU(2)
representations, as expected. Finally we should notice that in terms of the SU(2)
algebra, the Hamiltonian acquires the simple form

=m. (65)

ho ~,

H= —FP%, (66)
where
hp2v
w = 2
While the wave functions
In)g = NYPT|0)g, (67)

where the normalization constant is obtained through the commutation relations

(62), turns out to be
) (v—n-=1)!
N =V —r (68)

For other calculations one can obtain the following expressions in terms of
the raising and lowering operatoPs.

u 1{4 1 5 1
m=§<P-\/ e+ T e(e—1)>’ )

d 1/ 1 A 1
ey )

where it has to be understood that for the last bounded statd ) the raising
operator vanishes. On the other hand, we remark that the vadiabt® be con-
sidered as an-dependent operator. Using Egs. (53) and (58) and considering the
constraint condition 2=v —2n — 1, we can thus calculate the matrix elements
of these functions as

<n’ 'ﬁ n>q = (n'| sinh@@x)|n)q
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_ n(v — n) s
“Vw-2n—1w-2n+1)""t

n+1)v—-n-1)
\/ w_2n_Do_2n_3) """ D
<n’ ﬂi n> = <n/ coshex) d n>
du| / a dx| /g
_ 1 /n(v—n)(v—2n-— 1)8
2 (v—2n+1) ™t
1/ n+)v—-—n—-21)(r—-—2n-1)
2\/ (v —on— 3) 8n’,n+l (72)
2.3. Pseudoharmonic Oscillator
Generally, this potential can be taken as (Goldretal., 1960),
1 ,(r 1o\
VpH(r) = éKro <5 - I’_> ) (73)

wherek is the force constant and thg equilibrium bond length. For simplicity,
the natural unith=u =« =w =1 are employed throughout this paper, if not
explicitly stated otherwise, where is the reduced mass ang the frequency.
Consider the Scladinger equation with a potenti¥l(r) that depends only on the
distance from the origin

H \pnfm(ev @, r) = <_%V2 + VPH(r)> \Ianm(G! @, r) = E‘l’ném(e’ @, r)' (74)

Let

Wom(r, 6, ¢) = rflRﬁ(r)Yem(Q, ®), (75)

whereYym(9, ¢) is the normalized spherical harmonic. Substitution of Eq. (75)
into Eq. (74) enables us to obtain the following radial $ciimger equation
d2R(r) 2e+1)
2dr2 2r2

whereE denotes the energy. If we consider the contribute of effective potential is
from the combination of the centrifugal potential with the pseudoharmonic one,

[+ Vi) - |R =0 (76)
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we then have

(Y o
which can be arranged to
A Rk R 7o
where
rp = v2(8% — 1/4)4, (79)
with

B = \/(z + 172 + (r2/2)%.
The solution of the radial Scbhdinger Eq. (76) with the effective potential (78)
can be analytically obtained as (Sage, 1984)

In)g = NEr A2 /41 £(r2)2), (80)

n!
NS = | TR (81)

The corresponding eigenvalue can be taken as

1 B
E=n+-+>—--". 82
+ 2 + 2 4 (82)
We now consider the eigenvalleunder the limit ofrg. Whenrg is very large, the

eigenvalueE becomes

with

1 2¢+1) 1
Exn+ S+ ——5—+ -,
2 rg 8rg
which corresponds to the energy levels of the harmonic oscillator and rigid rotator
except for a small constan';/arg. However, for the smally, the corresponding
eigenvaluekE can be taken as

(83)

¢ 3
Exn+ -+, 84
+ 5 + 2 (84)
which is in proportion to the energy levels of the isotropic 3D harmonic oscillator
with principle quantum numbem2+ ¢ and force constant/4. In the following
section we make use of the radial eigenfunctions (80) to construct the creation and
annihilation operators with the factorization method.
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Let us address how to find the ladder operators for the pseudoharmonic radial
wave functions (80). We start by establishing the action of the differential operator
% on the radial wave functions (80)

d|n)ﬂ=[ L p+1/2

dr 2

One possible relation for the derivative of the associated Laguerre functions is
given in (Gradshteyn and Ryzhik, 1994)

2, d
} Inys + NPrPH/2er/4 aLﬁ(rz/z). (85)

K 1000 = nLg00 - (14 )l 100 (86)

The substitution of this expression into (85) enables us to obtain the following
relation

B
( g+ﬂ+l/2_[+@>|n)ﬁ:2(n:rﬂ)Nl\/lgn
n-1

dr r 2T
Making use of Eg. (81), we can define the following operator

s 1 d 1, 1

L__E[—ra—ér +<2n+ﬂ+§>] (88)
with the following effect on the wave function

L_nyg=t_|n—1)s =/n(B+n)n—1). (89)

As we can see, this operator annihilates the ground Kigfeas expected from a
step-down operator.

We now proceed to find the corresponding creation operator. Before pro-
ceeding to do so, we should make use of another relation between the associated
Laguerre functions (Gradshteyn and Ryzhik, 1994)

d
X &Lﬁ(x) =+ 1Ly (X) = (N4 o+ 1—Xx)L7(X). (90)
Substitution of this expression into Eq. (91) admits us to obtain
d B+12 r 2 r2 20 +1) N
— = -+ - 1-— = Lyg.
[dr : +2+r(n+ﬂ+ 2> In)g : Nf+1|n+ )8
(91)

Using Eq. (81) again, we can define the following operator

s 17 d 1, 3
£+_§[ra—§r +<2n+ﬂ+§>], (92)
satisfying the equation
Lilng =ten+1)5 =/ + 1B +n+1)in+ 1. (93)
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We now study the algebra associated to the operatqlrandﬁ On the
basis of results (89) and (93) we can calculate the commutétarg ., ]:

[£_, Lyin)g = 260|n)g, (94)
where we have introduced the eigenvalue
1
o = (n + ﬁi) . (95)
2
We can thus define the operator
A 1
fo= (n + ﬁ%) . (96)

The operatorfli andZo thus satisfy the commutation relations
[£_,L.]=2L0, [LoL_l=-L_, [LoLi]=Ly (97)

which correspond to the SU(1, 1) group for the pseudoharmonic oscillator. The
Casimir operator can be also expressed as

Cin)g = [Lo(Lo — 1) — L4L-1IN)p = [Lo(Lo+ 1) = L_L,]In)s

= J(J —1)In)g (98)
with
B+
J= 5 (99)
Finally, we should notice that the Hamiltonian acquires the simple form
. - r2
H=Lo— ZO' (100)

For further calculations one can obtain the following expressions in terms of the
creation and annihilation operato@& andco as

= 2[2f0 — (£y + £)] (101)

and

— =Ly -L)— % (102)

The matrix elements of these two functions can be analytically obtained in terms
of Egs. (89) and (93) as

(mir2n) = 2[2n + B + Ldmn — V(N + 1) + B + 1)dmnr1

— V(0 + B)omn-1] (103)
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and

ml 4
dr

2.4. Infinitely Deep Square-Well Potential

2

n> = \/(n + 1)(” + ﬁ + 1)5m,n+l -V n(n + ,B)Sm,nfl - }5m,n-
(104)

The Hamiltonian for a single particle moving in a one-dimensional infinitely
deep square-well potential is

p2
H=_—+V(x),
21
0 O<x<lL
VO =\ & otherwise, (105)
whose wavefunctions become
1 . h? ,
Ny = ¢¥n(X) =/ — sin(nx), En=—n% n=1,223... (106)
b4 21
For convenience we define the “number” operaior
filn) = n|n). (107)

We now address how to find the creation and annihilation oper&pfsom the
wave functions (106)

Siin) =sin+1). (108)
From the wavefunctions (106) we have
d 1
—¥n(X) = n,/ — cosfix). (109)
dx b4
We thus expresé‘i by x, d/dx andn as
R R ) d]lh-1 A R . d
S_= [(cosx)n — (sinx) &} A S+ = (cosx)n + (sinx) ax’ (110)

which implies that

S In=sn—-1=n-1n-1), Sin)=sn+1) =nn+1).
o (111)
The commutator§_, S, ] can be calculated on the bag

[S_, S41in) = (2n — 1)in) = 2S0ln), (112)
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which implies that
So=n-—1/2. (113)

At least, in the spaces spanned|by the operator§A+ andS, satisfy the com-
mutation relations of an SU(1, 1) algebra, which is isomorphic to the SO(2, 1)
algebra

[S_,S8:1=250, [So, 8] = %S, (114)

which is the dynamical group for the infinitely square-well potential.

3. HARMONIC LIMITS OF THE SU(2) ALGEBRA
3.1. The Case of the Morse Potential

In this section we turn our attention to the harmonic limit in which the
Morse potential approaches a harmonic oscillator potential. In this it O
andVy — oo, but keeping the produét = 252V, finite, so that the expansion of
the exponential functions in (3), leads to the harmonic limit

. 1
I|m VMorse: EkXZ. (115)

Vo— 00
We now proceed to analyze the contraction of the SU(2) algebra
Gsup) = Ky, K_, Ko} (116)

for this limit. We first note that according to the relatios=2v — 2n — 1, we have

. 2s . s—1 . s+1
lim = = fim 32— w3 o1 (117)
V=00 Y V—00 S V—00 S

If we now expand the exponential function of the variapleeeping in mind that
in the harmonic limit8 — 0, we find the approximation

1 1
y = v(1- Bx); v ~(@+ Bx), (118)
which can be used to obtain the corresponding approximation for the derivative
d 11 d
= 119
dy By dx (119)
whose harmonic limit turns out to be
d 11 d 1 d
lim — =i -———@ — == — 12
vl—>moo dy vl—>rrclo|: ﬂ 1)( +ﬂX) dX:| ,31) dx ( O)
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We are now ready to study the harmonic limit of the operators (116), but before
doing so it is convenient to introduce the renormalization
K K_ —2K
bf ===, b=-% bp=—2-",
Jv Jv

which, when considered in (10) and (19), leads to

. JvB 1 d o h d

Jm, b 2 * BJ/v dx ¥ 2n 2uw dx al (1229)
. ) [ h d

vll—>moo b= oh X+ 20 AX a; (122b)

lim by =1, (122c)

V—>00

(121)

%

with w given by (29). The operatos"™ anda satisfy the bosonic commutation
relation

[a,all=1; [aa]=[af,al]=0, (123)
as expected. Thus, in the harmonic limit the SU(2) algebra contracts to the Weyl
algebra, i.e.,
lim Gsup) = {a', a, 1. (124)

Finally, in terms of the operators (121), the Morse wave functions take the simple
form

. = [Tt e, (125)

whose harmonic limit is given by

v||—>moo |n> \/_l
wherego(y) is the ground state for the harmonic oscillator. .
Before finishing this section, it is interesting to note that the operdators
andb’ can be explicitly expressed in terms of the physical coordinaed its
corresponding momentuifi

sz[?( ’Bi—i—s)(ZS—l)——] Sv_sl, (127a)

6=[£ (E +s> (23+1)——} s+l (127b)

Vv VS

a")"go(y), (126)
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3.2. The Case of the MPT Potential

We now analyze the harmonic limit of the MPT potential, which is obtained
whena — 0 andD — oo , but keeping the produst= 2«?D finite, so that the
expansion of the exponential functions in (36), leads to

. 1,
Dlinoo VvpT = EkX . (128)

In the algebraic scheme this limit must be applied to the SU(2) generators, which
are convenient to be renormalized in the following form

- P_ . 2P
= —— b=— by = . 129
7 5 = (129)

We first note that according to the relation2v — 2n — 1, we have

lim ,/ - (130)
V—> 00 U*)OO

On the other hand, we can make the approximation ocoght 1 and sinhgx) ~
aX in the harmonic limite — 0. These results, together with (52) and (57), lead

to
. 1 d o Uw h d .
lim bt = (-—= — + ¥ "x) = [E5x— [— — =af; (131
S (ﬁadx+ 2 X) Vo "\ Zpoax — &0 (1819
— 1 d  Ja nw h d |
lim b = - = B [ % _a (131b
. (ﬁa dX+ 2 X) 2hx+ 2uw dx a ( )
lim by = 1, (131c)
with
2 2
w=2N,~ [2D2® (132)
21 w

2/.LD

where we have made use of the relatigi2 — k >~
D — oo. The operatord! anda satisfy the bosonic commutatlon relations

[a,a1=1; [a 4 =4, af]=0, (133)

as expected. Therefore the SU(2) algebra is contracted to the Weyl algebra in the
harmonic limit

lim Gy = U|Lmoo{6T, b, bo} = {af, &, 1}. (134)
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Finally, in terms of the operators (129), the MPT wave functions can be simply
expressed as

Vv —n—-1)

M= e 6710 (135)

whose harmonic limit is given by

im_In)y = = &) do(u) (136)

V—>00

wheregg(u) is the ground state of the harmonic oscillator.

4. CONCLUSIONS

In this paper, we established the raising and lowering operators for important
molecular potentials, such as the Morse potential, the MPT potential, infinitely
deep square-well potential, and the pseudoharmonic potential. We derived the
realizations only in terms of the physical variable without introducing an auxiliary
variable. Itis shown that the SU(2) group was the appropriate dynamical symmetry
for the bound states of the Morse and MPT potentials, but the SU(1, 1) group for
the infinitely deep square-well potential and the pseudoharmonic potential. We
used the SU(2) algebra to express the Morse and MPT wave functions in terms
of the action of the creation operatiﬁr+ and I5+ on the ground state. The matrix
elements of the different related functions were analytically obtained in terms of the
ladder operators. This method can be generalized to other functions and represents
a simple and elegant approach to obtain these matrix elements in comparison
with the traditional techniques in configuration space. The harmonic limits were
also analyzed, showing that the SU(2) algebra for the Morse and MPT potentials
contracts to the appropriate Weyl algebra in this limit.
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